
daeIndexDet:

A Program for the Index Determination in DAEs using the

indexdet Library and the ADOL-C Package for

Automatic Differentiation

Dagmar Monett
DFG Research Center MATHEON

Institute of Mathematics
Humboldt-Universität zu Berlin

Unter den Linden 6,
10099 Berlin, Germany

monett@math.hu-berlin.de

July 5, 2007

Abstract

This document explains how to use a program for index determination
in systems of differential algebraic equations by using Automatic Differen-
tiation techniques. It will lead the users through the steps needed from
creating their examples (e.g. DAEs) to finally running the program that
computes their index.



Contents

1 Introduction 2
1.1 Index determination in DAEs . . . . . . . . . . . . . . . . . . . . 2

2 Getting Started 3
2.1 The distribution files . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Installing the libraries . . . . . . . . . . . . . . . . . . . . 4
2.2 Compiling and linking the program . . . . . . . . . . . . . . . . . 5
2.3 Running the program . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Defining the DAE, the Dynamic, and the Trajectory 6
3.1 User example classes . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Creating and Referencing Objects of the User Classes 8

5 Parameters Controlling the Program Run 9
5.1 The degree of Taylor coefficients . . . . . . . . . . . . . . . . . . . 9
5.2 The QR and IO thresholds: Controlling the precision . . . . . . . 9

5.2.1 The QR threshold . . . . . . . . . . . . . . . . . . . . . . . 9
5.2.2 The IO threshold . . . . . . . . . . . . . . . . . . . . . . . 10

5.3 The printout parameters: Controlling the information to be printed
out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3.1 What to print . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3.2 Where to print . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Default Settings 10
6.1 Modifying the default settings . . . . . . . . . . . . . . . . . . . . 12

6.1.1 Modifying the values one by one . . . . . . . . . . . . . . . 12
6.1.2 Modifying several values at a time . . . . . . . . . . . . . . 13

7 Main Function Call 13

8 All in All 14

9 Automatic Differentiation using ADOL-C 15
9.1 Active Sections: Computing the Taylor coefficients . . . . . . . . 15

9.1.1 Active section to compute the trajectory . . . . . . . . . . 15
9.1.2 Active section to compute the dynamic . . . . . . . . . . . 17
9.1.3 Active section to compute the DAE . . . . . . . . . . . . . 18
9.1.4 Constructing the matrices A, B, and D . . . . . . . . . . . 19

References 20

1



1 Introduction 2

1 Introduction

daeIndexDet stands for Index Determination in DAEs and is a program for
computing the index in systems of differential algebraic equations (DAEs) with
properly stated leading terms. It uses the indexdet library, which actually pro-
vides the functionalities for the index computation. Its current version is coded
in C++.

The main strengths of the indexdet library we introduce are:

• Index calculation based on a matrix sequence with suitable chosen projec-
tors by using Automatic Differentiation (AD) techniques [1, 2].

• Evaluation of derivatives using the C++ package ADOL-C [7]. ADOL-C
provides easy-to-use drivers that compute convenient derivative evaluations
with only few modifications to the original C++ code.

• Inclusion of classes for implementing Taylor arithmetic functionalities. Ba-
sic operations with and over both Taylor polynomials and matrices of Taylor
polynomials, as well as Linear Algebra functions (several matrix multiplica-
tions and the Householder QR factorization with column pivoting being the
most relevant ones) that complement the index determination are provided
by overloading built-in operators in C++.

• Extension of the exception handling mechanisms from C++ to provide a
robust solution to the shortcomings of traditional error handling methods,
like those that may occur during execution time when computing the index.

1.1 Index determination in DAEs

We deal with DAEs given by the general equation

f((d(x(t), t))′, x(t), t) = 0, t ∈ I (1)

with I ⊆ R being the interval of interest.
How to compute the index of these DAEs is addressed in [4, 5, 6]. Special

attention is paid to the coefficients

A(t) :=
(

∂f
∂z

)
, B(t) :=

(
∂f
∂x

)
, and D(t) :=

(
∂d
∂x

)

with z(t) = d′(x(t), t).
The matrices A(t) ∈ Rn×m, B(t) ∈ Rn×n, and D(t) ∈ Rm×n are supposed to

be continuous. Further, the coefficients A(t) and D(t) should be well matched,
which makes the DAE’s leading term properly stated. The computation of the
index is based on a matrix sequence given the coefficients A(t), B(t), and D(t).



2 Getting Started 3

By forming the sequence of matrices, suitable chosen projectors are computed
using generalized inverses.

In [3], an algorithm is proposed to realize the matrix sequence and to finally
compute the index. Our indexdet library implements such an algorithm with
only some modifications, the most relevant ones being the way the matrices A(t),
B(t), and D(t) are computed (via ADOL-C), as well as how the time differen-
tiations in the matrix sequence are done (via a shift operator over the Taylor
series).

In the rest of this article we name d(x(t), t) and x(t) from Equation 1 the
dynamic and the trajectory, respectively.

The DAE, the dynamic, and the trajectory are defined as follows:

• The function f : Rmdyn × Rmtra × R → Rmdae defines the DAE, ndae =
mdyn + mtra + 1 being the number of independent variables and mdae being
the number of dependent variables. The independent variables of the DAE
f(z(t), x(t), t) = 0, with z(t) = d′(x(t), t) are z(t), x(t) and t.

• The function d : Rmtra × R → Rmdyn defines the dynamic, ndyn = mtra + 1
being the number of independent variables and mdyn being the number of
dependent variables. The function d(x(t), t) has two independent variables,
x(t) and t, that are previously computed at the time of computing d(x(t), t).

• The function x : R → Rmtra defines the trajectory, mtra being the number
of dependent variables. The function x(t) depends on the independent
variable t, which value is given by the user.

2 Getting Started

The steps needed to compute the index by using the indexdet library are grouped
into the following:

1. Installing the distribution files and libraries.

2. Creating and editing the user header where the DAE and other related
information are defined.

3. Editing the daeIndexDet C++ source file that computes the index for the
already defined user example.

4. Compiling and linking the daeIndexDet C++ source file.

5. Running the daeIndexDet program.

The next sections will explain these steps in detail.



2.1 The distribution files 4

2.1 The distribution files

Figure 1 shows a general schema with the most important libraries and files that
are needed for the index determination.

Figure 1: The main libraries and files needed for the index determination.

The libraries adolc.lib and indexdet.lib provide the functionalities for
automatic differentiation and index determination, respectively. We use the
adolc.lib library for the evaluation of derivatives using the C++ package ADOL-
C. We introduce the indexdet.lib library for the index calculation based on a
matrix sequence with suitable chosen projectors.

2.1.1 Installing the libraries

Both the adolc.lib and indexdet.lib libraries should be previously installed
and properly declared in the user path.

The ADOL-C package, which includes the adolc.lib library, can be down-
loaded from the ADOL-C’s web site [7]. We suggest to follow the steps described
in the files INSTALL and README there provided where proper instructions for
installing ADOL-C on both *NIX and Windows platforms are documented.

For example, on *NIX platforms we have done:

$ ./configure --with-docexa --with-addexa
$ make
$ make install
$ make clean

which configure, compile, and install the package’s files on {HOME}/adolc_base/

(the location by default) thereby including documented and additional examples.
The files for the indexdet.lib library, by now, are provided together with

the program daeIndexDet in the file indexdet.tar.gz. First, copy the file
indexdet.tar.gz on the location of your preference. Then, on *NIX machines
type:

$ tar zxvf indexdet.tar.gz



2.2 Compiling and linking the program 5

for decompressing the file. This instruction generates the local subdirectory
indexdet containing, in the current version, all needed files for both the program
and the library.

The provided makefile might be edited by the user (see next section for
details). It allows for compiling and linking both the program daeIndexDet and
the library indexdet.lib.

The C++ file daeIndexDet.cpp might be also edited by the user (see Section
4 for details). It allows for computing the index of the DAE, typed in the header
Example1.h (see Section 3) or any other user example.

2.2 Compiling and linking the program

When necessary, the makefile provided with the daeIndexDet program related
files should be edited. Its variable ADOLCDIR defines the subdirectory where
the ADOL-C package is installed. The ADOL-C subdirectory is assumed to
be (HOME)/adolc_base by default. The user should modify this location conve-
niently.

Edit also the program daeIndexDet.cpp properly, according to the DAE for
which the index should be computed.

For ensuring compatibility, we recommend to use the same C/C++ compiler
for all needed compilations (e.g. when compiling the libraries indexdet.lib and
adolc.lib, and the header defining the DAE).

For compiling and linking the program daeIndexDet on *NIX machines type:

$ ./makefile

from the already created local subdirectory indexdet. The linking process
should generate the program daeIndexDet.exe on the same location.

2.3 Running the program

The daeIndexDet program can be executed by typing its name at the system
prompt. On *NIX machines simply type:

$ ./daeIndexDet

On Windows machines type instead:

> daeIndexDet



3 Defining the DAE, the Dynamic, and the Trajectory 6

3 Defining the DAE, the Dynamic, and the Tra-

jectory

The user header (i.e. Example1.h in Figure 1) contains the DAE for which its
index should be computed. In that header, the user should define not only the
DAE but also the dynamic and the trajectory. In other words, the user should
provide the functions x(t), d(x(t), t), and f(z(t), x(t), t) in a separate C++ class.
The structure of this class will be presented in the following.

3.1 User example classes

The definitions for the functions x(t), d(x(t), t), and f(z(t), x(t), t) should be
provided by the user. She or he can realize this through a self implemented class
that should be compiled before the program to determine the index is run.

Such a user class inherits a general structure and diverse functionalities from
the abstract base class IDExample that is coded in the C++ header IDExample.h
(provided in the library indexdet.lib). Instances of the class IDExample can not
be created: it is an abstract class. However, pointers to the derived user classes
are type-compatible with a pointer to the base class, which makes polymorphism
a powerful feature that is exploited by the program to determine the index.

Let the trajectory x(t) be defined by

x1(t) = sin t, (2)

x2(t) = cos t, (3)

x3(t) = log 1 + t, (4)

For this example, mtra = 3 since x(t) is defined by three equations that
depend on the independent variable t. Its C++ code in the header Example1.h
corresponds to the following instructions:

void tra( adouble t, adouble *ptra )
{
ptra[ 0 ] = sin( t );
ptra[ 1 ] = cos( t );
ptra[ 2 ] = log( 1 + t );

}

t being the adouble independent variable and ptra being a pointer to an
adouble vector defining the trajectory.

Let the dynamic d(x(t), t) be defined by



3.1 User example classes 7

d1(x(t), t) = −2 ·
√

1− x1(t), (5)

d2(x(t), t) = sin t · x2(t), (6)

In this case, mdyn = 2 and ndyn = 4, since d(x(t), t) is defined by two equations
that depend on four independent variables (i.e. three from x(t) and t).

Finally, let the DAE f(z(t), x(t), t) be defined by

f1(t) = z1(t) + x3(t), (7)

f2(t) = z2(t)− x3(t), (8)

f3(t) = x3(t)− g(x1(t)− x2(t)), (9)

with z(t) = d′(x(t), t) and g(x) = ex − 1. Here, mdae = 3 according to
the number of equations that define f(z(t), x(t), t), and ndae = 6 because we
have three independent variables from x(t), two from z(t), and the independent
variable t.

The user should code all these equations (i.e. her/his class example) in the al-
ready mentioned C++ header file. For example, the following code shows the user
class Example1.h and its member functions. It is a polymorphic class because it
inherits virtual functions from the abstract base class IDExample.

/** File Example1.h */
#ifndef EXAMPLE1_H_
#define EXAMPLE1_H_
#include "IDExample.h" // Abstract base class.

class Example1 : public IDExample {
public:

/**
* Class constructor.
*/

Example1( void ) : IDExample( 2, 3, 0.0, "Example1" )
{ }

/**
* Definition of the trajectory x(t).
*/

void tra( adouble t, adouble *ptra )
{ //... }

/**
* Definition of the dynamic d(x(t),t).
*/

void dyn( adouble *px, adouble t, adouble *pd )
{ //... }



4 Creating and Referencing Objects of the User Classes 8

/**
* Definition of the DAE f(z(t),x(t),t).
*/

void dae( adouble *py, adouble *px, adouble t, adouble *pf )
{ //... }

};

#endif /*EXAMPLE1_H_*/

Notice that the class constructor for the user class Example1 does not have
any parameter. However, it calls the class constructor of the abstract base class
IDExample with specific ones:

1. The first parameter corresponds to the number of dependent variables of
the dynamic d(x(t), t) and its type is int (equal to 2 in the example). It
must be equal to the number of equations that define the dynamic.

2. The second parameter corresponds to the number of dependent variables
of the DAE f(z(t), x(t), t). Its type is also int. Its value must be equal to
the number of equations that define the DAE, as well as be equal to the
number of equations that define the trajectory x(t) (3 in the example).

3. The third parameter is a double that indicates the point at which the
index should be computed, i.e., the value for the independent variable time
(t0 = 0.0 in the example).

4. The fourth and last parameter is a character string used to denote the
output files with numerical results. For example, the name of the class can
be used (“Example1” in the example).

This is the only information, besides the definition of the trajectory, the dy-
namic, and the DAE, that is required from the user.

When an object of type Example1 is created, there are initialized also other
parameters related to the example as well, as those corresponding to the rest-
ing dimensions already mentioned. The functionality of x(t), d(x(t), t), and
f(z(t), x(t), t) should be coded in the member functions tra, dyn, and dae.

4 Creating and Referencing Objects of the User

Classes

Creating and referencing an object of a user class, as required by the program
that determines the index, i.e. the daeIndexDet program, is done as follows:



5 Parameters Controlling the Program Run 9

IDExample ex1; // instantiates object of class Example1

IDExample * pobj = &ex1; // pobj is a pointer to the object ex1

The pointer obj is later passed on as a parameter in a function call for further
calculations. See section 7 for more.

5 Parameters Controlling the Program Run

The program daeIndetDet works with some global parameters. The name iden-
tifiers of these parameters are defined in the header file defaults.h, provided in
the library indexdet.lib. The name identifiers are listed below:

TP DEGREE The degree of Taylor coefficients or highest derivative degree.

QR EPS The threshold for the Householder QR factorization with column
pivoting.

IO EPS The threshold for I/O functionalities.

PRINT PARAM WHAT A print out parameter for controlling output. It
indicates what to print out (i.e. level of detail in which the numerical results
and other information from the program should be presented to the user).

PRINT PARAM WHERE A print out parameter for controlling output.
It indicates where to print out (i.e. to a data file, to the screen, or nowhere).

5.1 The degree of Taylor coefficients

The matrices needed by the matrix sequence with suitable chosen projectors
used to compute the index are represented in terms of Taylor polynomials. Their
degree of Taylor coefficients is defined for and used in all the Taylor arithmetic
operations.

5.2 The QR and IO thresholds: Controlling the precision

5.2.1 The QR threshold

The QR threshold is the threshold for the Householder QR factorization with
column pivoting. It is used when verifying whether the pivot elements hold the
epsilon condition or not.



5.3 The printout parameters: Controlling the information to be printed out 10

5.2.2 The IO threshold

The IO threshold is the threshold for I/O functionalities. For example, before
printing out a matrix to the screen or to a data file it is verified whether its ele-
ments are greater or lesser than the IO threshold. In case an element is lesser than
the threshold, a zero is printed out and not the digits with the whole precision.

5.3 The printout parameters: Controlling the informa-
tion to be printed out

Two printout parameters can be used in combination for controlling the output
of the program: _PRINT_PARAM_WHAT_ and _PRINT_PARAM_WHERE_. The former
indicates what to print, i.e., which information should be provided by the program
during its execution or when it finishes. The latter indicates the desired output
destiny, i.e., where to print the corresponding information. Both parameters
have values by default predefined in the variables _PRINT_PARAM_WHAT_VAL_ and
_PRINT_PARAM_WHERE_VAL_, as it will be introduced in Section 6.

5.3.1 What to print

Printing out information to the user has different levels of detail, which become
more and more complex according to the importance of the level. The level of the
desired output is determined by the value of the variable _PRINT_PARAM_WHAT_VAL_,
which can be controlled by the user.

Table 1 presents the different levels of detail this parameter can have.
The simplest level, i.e., when _PRINT_PARAM_WHAT_VAL_ = 0, is recommended

when the user wants to measure the running time of the program, for instance,
since no other information is printed out, which might be a time consuming task.

5.3.2 Where to print

Not only what to print is important but also where to print out that information.
The output destiny is determined by the value of _PRINT_PARAM_WHERE_VAL_, a
variable that can be also controlled by the user.

Table 2 presents the different values this variable can take. Notice that defin-
ing _PRINT_PARAM_WHERE_VAL_ = 2 implies printing no information at all, no
matter the value the variable _PRINT_PARAM_WHAT_VAL_ has (i.e., what to print
out).

6 Default Settings

The global parameters are set a priori to allow the user to start using the pro-
gram, no matter which values these parameters have. Table 3 shows their default



6 Default Settings 11

Table 1: Printout parameter: What to print.
_PRINT_PARAM_WHAT_VAL_ What to print

0 The returned code of the main program.
1 Information when _PRINT_PARAM_WHAT_VAL_ = 0.

Both fatal and warning error texts, if present.
Calculated index.

2 Information when _PRINT_PARAM_WHAT_VAL_ = 1.
Evaluation of the functions x(t), d(x(t), t), and
f(z(t), x(t), t) at t = t0.
Matrices A, B, and D.
Intermediate rank values.
Last pivot elements holding the condition by the
Householder QR. Last pivot elements not holding the
condition by the Householder QR.
Matrices P0, P0P1, P0P1P2, and so on.
Matrices DD− = R, DP1D

− = DP0P1D
−,

DP1P2D
−, and so on, as well as matrix (DPiD

−)′

from each iteration.
3 Information when _PRINT_PARAM_WHAT_VAL_ = 2.

Both projectors Pi and Qi from each iteration.
22 All details.

Table 2: Printout parameter: Where to print.
_PRINT_PARAM_WHERE_VAL_ Where to print

0 to the screen
1 to a data file
2 nowhere



6.1 Modifying the default settings 12

settings.

Table 3: Default settings for the global parameters.
Parameter name Default value
_TP_DEGREE_VAL 10
_QR_EPS_VAL 10−15

_IO_EPS_VAL 10−15

_PRINT_PARAM_WHAT_VAL 0
_PRINT_PARAM_WHERE_VAL 0

6.1 Modifying the default settings

Should the default settings be changed, the user must define in the main program
(i.e. in daeIndexDet.cpp) a variable of type IDOptions like this:

IDOptions options;

The variable options will encapsulate an object of type IDOptions and will
provide the user with well-defined functions that update or change the default
settings. Then, depending on the global parameter values she/he want to change,
several alternatives are possible for defining the new values.

6.1.1 Modifying the values one by one

Making:

options.daeindexset( _TP_DEGREE_, 5 );
options.daeindexset( _QR_EPS_, 1E-10 );
options.daeindexset( _PRINT_PARAM_WHAT_, 2 );

indicates that the new value for the Taylor polynomial’s degree will be 5 (i.e.
_TP_DEGREE_VAL = 5 instead of the default value 10), that the new value for
the Householder QR factorization’s threshold will be 10−10 (i.e. _QR_EPS_VAL

= 10−10 instead of 10−15), and that the level for printing out information from
the program will be 2 (i.e. _PRINT_PARAM_WHAT_VAL = 2 instead of 0).

The function daeindexset allows for changing the global parameters’ settings.
It has two parameters: the former is the name identifier of the global parameter
(e.g. _TP_DEGREE_) and the latter is its new value (i.e., 5). By doing this,
the default settings for the global parameters can be changed one by one. This
overwrites the old settings.



7 Main Function Call 13

6.1.2 Modifying several values at a time

In this case, an array of name identifiers should be declared, indicating the global
parameters the user wants to change its values:

int nameid[] = { _TP_DEGREE_, _QR_EPS_ };

Then, there should be provided the new values for the desired global param-
eters, also in an array:

double value[] = { 8, 0.00001 };

The array nameid contains the name identifiers and the array value, their
new values.

The order in which the name identifiers are typed should be the same as the
order of the values in the array value. I.e., TP DEGREE will have the value
8 and QR EPS the value 0.00001. Any unspecified parameter will have default
values.

Again, the function daeindexset finally does change the values:

options.daeindexset( 2, nameid, value );

where the first parameter indicates the number of global parameters that are
going to be changed (two in the example), and both nameid and value are as
defined above.

7 Main Function Call

The corresponding function call to the actual function that determines the index
of DAEs is:

int errcode = daeindex( argc, argv, pobj, options );

or

int errcode = daeindex( argc, argv, pobj );



8 All in All 14

depending on whether the default settings were changed (first case) or not
(second case).

The first function call has four parameters. Both parameters argc and argv

are the well known argument vectors. They make available to a C/C++ pro-
gram the arguments from its command line and its values when the program is
called. The parameter pobj is the pointer to the object that encapsulates the
user example functionalities (see Section 4). Finally, the parameter options is
the pointer to the object that encapsulates the values of the global parameters
to change (see Section 6.1).

The second function call has only three parameters, which are the same as
for the first three parameters in the function call above. It works with default
values for the global parameters.

The returned code of the program is controlled through the variable errcode.

8 All in All

Summarizing, the daeIndexDet.cpp program can look like follows:

#include "matrixseq.h"
#include "Example1.h"
#include <iostream>
#include <typeinfo>

int main( int argc, char *argv[] )
{
int errcode;
Example1 ex1;
IDExample * pobj = &ex1;
IDOptions options;

options.daeindexset( _TP_DEGREE_, 5 );
options.daeindexset( _QR_EPS_, 1E-10 );
options.daeindexset( _PRINT_PARAM_WHAT_, 2 );

errcode = daeindex( argc, argv, pobj, options );
return errcode;

}

where the header matrixseq.h allows for using the library where the func-
tions concerning the index determination are included; The header Example1.h

corresponds to the class where the user defines her/his functions x(t), d(x(t), t),
and f(z(t), x(t), t), as well as all other information regarding the example to use
(like the point at which the index should be computed, for instance); And the



9 Automatic Differentiation using ADOL-C 15

standard C++ library headers iostream and typeinfo should be used for read-
ing from and writing to the standard streams, and for getting information about
both static and dynamic types, respectively.

9 Automatic Differentiation using ADOL-C

As it was already mentioned in Section 1, we use the C++ package ADOL-C
for evaluating derivatives. This is why the vector functions related to the user
problems are coded in programs written in C++ (see Section 4).

Figure 2 shows the bridge between the daeIndexDet program and ADOL-C.
In particular, specific ADOL-C drivers are used to compute the Taylor coefficients
of both the dependent and the independent variables related to the DAE, to the
dynamic, and to the trajectory. On the left hand side of the figure is the user
header containing the definition of the DAE, of the dynamic, and of the trajectory,
together with other global parameters and input information to the program (see
sections 3 and 5 for details).

The next sections will introduce the basics of the other components from
the figure, specially how do the Taylor coefficients are computed. Finally, the
construction of the matrices of Taylor coefficients A(t), B(t), and D(t) (defined
in Section 1.1) is also addressed.

9.1 Active Sections: Computing the Taylor coefficients

The indexdet library includes the header matrixseq.h (see Figure 1) which
provides the following functions:

1. asectra for computing the trajectory,

2. asecdyn for computing the dynamic, and

3. asecdae for computing the DAE.

each of them including an active section to calculate the trajectory, the dy-
namic, and the DAE, respectively, as illustrated in Figure 2.

An active section in ADOL-C is a sequence of statements that contains the
calculations involving the differentiable quantities at some time during the pro-
gram execution. The active sections of the functions asectra, asecdyn, and
asecdae will be described in the next sections.

9.1.1 Active section to compute the trajectory

The function asectra defines the variables and the active section for the trajec-
tory, calculating it for a given t as coded by the user in the corresponding member



9.1 Active Sections: Computing the Taylor coefficients 16

Figure 2: Automatic Differentiation using ADOL-C.



9.1 Active Sections: Computing the Taylor coefficients 17

function tra from its polymorphic example class (e.g. the class Example1 from
Section 4).

The tag equal to zero distinguishes the computations related to the variables
defined in this active section. The independent variable t is used to define an
active variable that is later used to compute the trajectory with a call to the
function tra via a function pointer.

The Taylor coefficients

Xtra(i) =

deg+1∑
j=0

Xtraj
· ij : R→ Rntra (10)

of the independent variable t (with deg the degree of Taylor coefficients as
introduced in Section 5.1) are initialized to the value of t given by the user in the
example header class (e.g. t0 = 0.0 from Example1.h). After this initialization,
the Taylor coefficients

Ytra(i) =

deg+1∑
j=0

Ytraj
· ij : R→ Rmtra (11)

of the dependent variable x(t) are computed with a call to the ADOL-C
function forward, which implements the ADOL-C forward mode.

9.1.2 Active section to compute the dynamic

The function asecdyn defines the variables and the active section for the dy-
namic, d(x(t), t), calculating it for given x(t) and t as coded by the user in the
corresponding member function dyn from its polymorphic example class (e.g. the
class Example1 from Section 4).

The independent variable t is also here an independent for the active section.
The other independent active variable for the dynamic is defined using the Taylor
coefficients from x(t) computed by the trajectory. The dynamic is evaluated via
a function pointer to the member function dyn, also coded by the user.

The Taylor coefficients

Xdyn(i) =

deg+1∑
j=0

Xdynj
· ij : Rmtra × R→ Rndyn (12)

of the now independent variables x(t) and t, are initialized as follows:

Xdyn = [Ytra, Xtra] (13)

i.e., to Ytra, the matrix of Taylor coefficients from x(t) (see Equation 11),
and to Xtra, the matrix of Taylor coefficients from t (see Equation 10), already



9.1 Active Sections: Computing the Taylor coefficients 18

computed in the previous section. Only the partial derivatives with respect to
the first independent variable of d(x(t), t), i.e., w.r.t. x(t), are considered.

The Taylor coefficients

Ydyn(i) =

deg+1∑
j=0

Ydynj
· ij : Rmtra × R→ Rmdyn (14)

of the dependent variable d(x(t), t) are computed with a call to the ADOL-
C function forward. The Taylor coefficients Ydyn can be used to compute the
derivative d′(x(t), t): We know from [7] that

p(j) =

deg∑
j=0

pj · tj + O(tdeg+1) (15)

= p0 + p1 · t + p2 · t2 + . . . + pdeg · tdeg. (16)

for a Taylor polynomial p(t). Then,

p′(t) = p1 + 2 · p2 · t + 3 · p3 · t2 + . . . + deg · pdeg · tdeg−1. (17)

We calculate d′(x(t), t) by applying a shift operator. In this case, the coef-
ficients are shifted so that the new matrix Yddyn = d′(x(t), t) has also deg + 1
columns, the last of them with zero values. These derivatives will be used in the
next section, i.e., to compute the DAE.

The matrix of adjoints Zdyn ∈ Rmdyn×ndyn×deg is used to compute the Jacobian
matrix ∂d

∂x
. Computing the adjoints is done with a call to the ADOL-C function

reverse, which implements the ADOL-C reverse mode. They will also be used
in the next section.

9.1.3 Active section to compute the DAE

The function asecdae defines the variables and the active section for the DAE
f(z(t), x(t), t) = 0, calculating it for given z(t), x(t), and t as coded by the user
in the corresponding member function dae from its polymorphic example class
(e.g. the class Example1 from Section 4).

Again, the independent variable t is an independent for the active section.
However, only the partial derivatives w.r.t. to the first and to the second inde-
pendent variables of f(z(t), x(t), t), i.e. w.r.t. z(t) and x(t), are needed. Notice

that the vector of independents y =




z
x
t


 is composed by z(t) (i.e. the Taylor

coefficients Yddyn of d′(x(t), t)), by x(t) (i.e. the Taylor coefficients Ytra), and by
the Taylor coefficients from t. The DAE is evaluated via a function pointer to
the member function dae as coded by the user.



9.1 Active Sections: Computing the Taylor coefficients 19

The Taylor coefficients

Xdae(i) =

deg+1∑
j=0

Xdaej
· ij : Rmdyn × Rmtra × R→ Rndae (18)

of the independent variable y should not be calculated anew: We have them
from the matrices Yddyn, Ytra, and Xtra (i.e. the corresponding Taylor coefficients
of the independent variables computed in the sections 9.1.2 and 9.1.1, respec-
tively). Then, the Taylor coefficients Xdae are initialized as follows:

Xdae = [Yddyn, Ytra, Xtra] (19)

The Taylor coefficients

Ydae(i) =

deg+1∑
j=0

Ydaej
· ij : Rmdyn × Rmtra × R→ Rmdae (20)

of the dependent variable f(z(t), x(t), t) are computed with a call to the
ADOL-C function forward.

The matrix of adjoints Zdae ∈ Rmdae×ndae×deg is used to compute the Jacobian
matrix ∂f

∂y
=

(
∂f
∂z

, ∂f
∂x

, ∂f
∂t

)
. They are computed with a call to the ADOL-C function

reverse.

9.1.4 Constructing the matrices A, B, and D

The matrices of Taylor coefficients A(t) and B(t) are computed using the matrix
of adjoints Zdae introduced in Section 9.1.3. For the DAE coded in the header
file Example1.h we have presented here, the Jacobian matrix ∂f

∂y
has the form:

∂f

∂y
=

(
∂f

∂z
,
∂f

∂x
,
∂f

∂t

)
=




?z ?z ?x ?x ?x ?t

?z ?z ?x ?x ?x ?t

?z ?z ?x ?x ?x ?t


 (21)

each ? being a pointer to a vector of deg Taylor coefficients. The first two
columns correspond to the Taylor coefficients of ∂f

∂z
(because mdyn = 2 in the

example), the next three columns correspond to the ones related to ∂f
∂x

(since
mtra = 3), and the last column to the ones of the independent variable t. The
matrices A(t) and B(t) have then the following form:

A(t) =

(
∂f

∂z

)
=




?z ?z

?z ?z

?z ?z


 ∈ Rmdae×mdyn (22)



REFERENCES 20

B(t) =

(
∂f

∂x

)
=




?x ?x ?x

?x ?x ?x

?x ?x ?x


 ∈ Rmdae×mtra (23)

The matrix of Taylor coefficients D(t) can be obtained from the matrix of
adjoints Zdyn introduced in Section 9.1.2. For our example it has the form:

D(t) =

(
∂d

∂x

)
=

[
? ? ?
? ? ?

]
∈ Rmdyn×ndyn (24)

since mdyn = 2 and ndyn = 3. The partial derivatives involving the indepen-
dent variable t, i.e. ∂d

∂t
, are not used.

References

[1] M. Berz et al. Computational Differentiation: Techniques, Applications, and
Tools. In Proceedings of the Second International Workshop on Computational
Differentiation, SIAM, Santa Fe, New Mexico, 1996.

[2] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. Number 19 in In Frontiers in Applied Mathematics.
SIAM, Philadelphia, PA, 2000.

[3] A. Lamour. Index Determination and Calculation of Consistent Initial Val-
ues for DAEs. Computers and Mathematics with Applications, 50:1125–1140,
2005.

[4] R. März. The index of linear differential algebraic equations with properly
stated leading terms. In Result. Math., volume 42, pages 308–338. Birkhäuser
Verlag, Basel, 2002.

[5] R. März. Differential Algebraic Systems with Properly Stated Leading Term
and MNA Equations. In K. Antreich, R. Bulirsch, A. Gilg, and P. Ren-
trop, editors, Modeling, Simulation and Optimization of Integrated Circuits,
International Series of Numerical Mathematics, volume 146, pages 135–151.
Birkhäuser Verlag, Basel, 2003.

[6] R. März. Fine decoupling of regular differential algebraic equations. In Result.
Math., volume 46, pages 57–72. Birkhäuser Verlag, Basel, 2004.

[7] A. Walther, A. Kowarz, and A. Griewank. ADOL-C: A Package for the
Automatic Differentiation of Algorithms Written in C/C++, Version 1.10.0,
July 2005.


